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An algorithm for producing pseudo random numbers is described. It is based on linear shift 
register sequences, and has the desirable properties of minimal size and rapid execution, 
producing a new random number each clock cycle. The mathematical basis for its operation is 
described. 

I. INTR~OUCTI~N 

There are many applications which call for long sequences of pseudo random 
numbers. An important example in the field of computational physics is the Monte 
Carlo simulation [ 1 ] of systems in statistical mechanics. The author has been 
working on a project to integrate a special purpose processor for carrying out Monte 
Carlo simulations onto a single VLSI “chip.” This device will be described elsewhere 
[2]. One problem which came up in this design was the need for a self-contained 
pseudo random number generator (PRNG). This generator has to meet very 
demanding requirements. 

(i) It must fit into the layout of a single chip. 
(ii) It must produce a new random number every clock cycle. 
(iii) It must produce random numbers of very high quality. 

The first requirement is the most difftcult, and has led to an algorithm which is 
different from most standard algorithms implemented in software. The last two 
requirements essentially force one to consider a generator based on shift register 
sequences, or Tausworth sequences [3]. This paper is intended to describe the 
mathematical basis for this algorithm since it may be of more genera1 application 
than our device. 

There exist sofware methods for generating Tausworth sequences where the entire 
random number is generated in parallel by the “exclusive or” instruction [4], from a 
table of the p previous random numbers. These algorithms are simple and can easily 
be designed into hardware to generate a random number each clock cycle. But, in 
order for the generator to be of sufficiently high quality p must be large (X100) and 
the storage requirements are too great for this application. The requirement that a 
new nmber be produced each clock cycle makes it necessary to generate all of the 
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bits in parallel. Thus one is led to consider the most general shift register scheme 
where m bits are produced by m exclusive or ‘s each clock cycle. The mathematics of 
this situation, which is a straightforward generalization of the simple case [5], is 
described in Section II of this paper. We will find that it is possible to have m parallel 
fed back shift registers in which the period of the random number, and each subset of 
its bits is 2” - 1, where n is the total number of bits of storage. 

In Section III some examples will be discussed of PRNGs which satisfy the 
requirements found in Section II. Also compiled there are lists of “good” generators 
which are not exhaustive but allow one to carry out a design for most practical 
situations. 

II. MULTI-BIT FEDBACK SHIFT REGISTERS 

Figure 1 shows the configuration of a typical fedback shift register (FSR). During 
each clock cycle each of the bits is replaced by the value of the preceding bit except 
for the first one which is replaced by the modulo 2 sum of some set of the bits in the 
shift register. If the initial state of the register is all zeros, then it will remain so for 
all time. If the initial state is nonzero, then the register will cycle through some 
number of states less than or equal to 2” - 1. The mathematics of this situation is 
very interesting, but for our purposes it is sufficient to note that the important 
properties of the sequence of 
something called the generating 
the register at time t in the ith 
x(t) = x, (0, 

bits produced by the FSR can be deduced from 
function. Suppose we denote the values of the bits in 
bit position, labeled from 1, by Xi(t). Then defining 

X(t) = s ciXi(t - 1), mod 2, (2.1) 
i=l 

xi(t)=xi-,(t- l)V i> 1, Q-2) 

where ci = 1 if the ith bit is incluced in the sum and zero, otherwise. The generating 
function is defined by 

G(A) = f X(t) A’. (2.3) 
t=o 

FIG. I. A typical shift register with 5 bits, and characteristic polynomial I + I + A’ + 1’ + A5. 
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If Eq. (2.1) is multiplied by A’ and summed over t and Xi(t) is replaced by 
X,(t - i + 1) by Eq. (2.2), we obtain an expression for G in terms of the c’s and the 
initial values of the shift register bits X,(t), usually called the “seed.” 

(2.4) 

The denominator of this expression depends only on the c’s and is independent of the 
initial configuration of the system. It is called the characteristic polynomial of the 
shift register. The numerator and denominator are polynomials in 1 of degree less 
than or equal to n - 1 and n, respectively. We assume without loss of generality that 
c, is 1. Several important things are related to the characteristic polynomial. In 
particular it may be shown that [5]: 

(1) A necessary condition that the period of the shift register be maximal, i.e., 
2” - 1, is that the characteristic polynomial be primitive over the field of integers 
mod 2. In other words it cannot be factored where the arithmetic of the coefficients is 
performed mod 2. 

(2) If the polynomial is primitive, then the period of the shift register divides 
2” - 1. In particular if 2” - 1 is a prime, called a Mersenne prime, then the shift 
register has maximal period. 

If the polynomial is factorizable, then the period is less than maximal. A maximal 
length FSR sequence is called a pseudo-noise (PN) sequence. Because there exist 
several Mersenne primes at convenient values of n we will generally consider only 
shift registers with n a Mersenne number. 

Given the bit sequence from the FSR we could construct random numbers by the 
algorithms mentioned in the Introduction, but we have decided that to generate a full 
word we want m feedback points with a mod 2 sum performed at each point 
simultaneously. The situation might appear as in Fig. 2. We can label the value of the 
ith bit in the jth row by X,,j(t) and we have at time t 

xi.j(t)=x(i-l),j(t - l)v i> 1. (2.5) 

FIG. 2. A nontrivial 3 bit FSR. 
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The new value of X,,,(t) = X,(r) could, in principle, come from any of the stored bits 

X,(t) = 2 f CijkXi,k(f - l)V mod 2. 
k=l /y 

(2.6) 

Again the important quantity is the generating function except now there are m of 
them 

G,(A) = f X,(t)A’. (2.7) 
I=0 

If we, as before, multiply Eqs. (2.5) and (2.6) by L’ and sum we obtain 

W-9 

This set of linear equations is solved to give 

G,(A) = f F,;‘Sk, 
k=l 

where Sj is the inhomogeneous term on the rhs of (2.8) and 

Fjk = Sjk + 2 ci,,li. 
i=l 

W) 

(2.10) 

For example, the F corresponding to Fig. 2 is 

(2.11) 

The structure is identical to (2.4) with the numerator, which only depends on the 
‘Lseed,” replaced by the S, and the denominator replaced by F-l. F may be inverted 
by Crammers rule as a ratio of determinants, often written 

F,; ’ = (- l)“j det F(j 1 i)/det F. (2.12) 

The important point is that each of the Gj is given as a ratio of polynomials in L with 
the same denominator. Thus each bit of the generator behaves as though it were 
produced by the same effective FSR, with, however, a different seed for each bit. The 
effective FSR has a characteristic polynomial which is the determinant of F. The 
degree of det F, or the length of the effective FSR, is bounded by 

m 

n=Cnj (2.13) 
j=l 
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and this bound is only reached if (i) c,,~~ = 1 for some j, and (ii) these j’s are all 
distinct. In particular cases, factors may cancel between numerator and denominator 
so that the effective FSRs for some bits are simpler. This is the case when each 
separate row of the system only couples to itself. But it is also possible, by making 
det F a primitive polynomial mod 2, to have the periods of all of the bits of the 
generator maximal for the total number of bits of storage, e.g. 2” - 1. This allows one 
to meet two of the criteria mentioned in the introduction. First, a number of generated 
each cycle and second, the period is as long as possible so the space required is a 
fraction (l/m) of that needed for an equivalent generator of the conventional type. 

Now we must consider the independence of the bits within the word [6]. To make 
progress we must be more specific than Fig. 2 about what we are going to do. The 
simplest feed back element is a two input XOR. For regularity of design we assume 
there are two taps on each shift register row. One near the center, and one at the end. 
Denote these positions by Q and nj. Again for simplicity assume one input to the 
XOR is from the q bit in the same row, and the other one is from the n bit of some 
other row. The requirement that det F be primitive leads to the requirement that all of 
the rows by connected in a circular chain in some order. Thus we have the simple 
result 

detF= fi (1 +Lqj)+ fi,Inj= fi (1 +Aqj)+12-” (2.14) 
j=1 j=l j=l 

notice that det F depends on the lengths of the shift registers only through their sum 
so that one may take them to be as uniform as possible for a regular layout. One 
must find a set of qj such that the polynomial in the form (2.14) is primitive. 

For an F in this simple form there is some permutation of the bits so it appears as 

F= 

By Cramers rule 

L 1 +/I41 A”’ 0 0 1+/Iq* A”’ 0 0 1 + 0 0 0 /I”’ A”-’ . . . 1 +‘p /I 0 0 hn : i . (2.15) 

j-l i-1 

kc, (1 +lq*)pnk fi (1 +Aqkh jai 
k=it 1 

jj; A”k ,g;, (1 + A”“) fij L”k, 

(2.16) 

j>i 

If we agree that we have guaranted that the system has full period, for example by 
making n a Mersenne number and det F primitive, then it simplifies our analysis to 
consider a special starting point. Since then every nonzero configuration of X’s will 
occur once in a full period we may consider the case where all X,(-l) = 0 except 
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X ,,“,,. Then all the Sj 
have explicitly 

This result contains information about relationships between the various bits. 
Consider the first two bits. We have 

in (2.9) are zero except S, which is given by S, = 1. Then we 

j-l 

Gj = n Ank fi (1 + A4k)/det F. 
k=l k=j+ I 

(2.17) 

G, = fi (1 + Jqk)/det F 
k=2 

(2.18a) 

G2=A”l fi (1 +lqk)/detF 
k=3 

(2.18b) 

or 

(1 +Aq2)G2+A"lG,=0 (mod 2). (2.19) 

Translated into a recurrence relation for X,, X2 this is identical to the statement that 
X, is fed with the XOR of itself and X, delayed by q2 and n,, respectively, which we 
knew. Now consider bit one and any other bit. We have 

(&J’) Gj = A”I+“z”’ +“j-1 
kfi+, (l+ lqk) (2.20) 

assume for the moment that n, + n2 + ... + nj-, < n/2; then we have 

A(n) G, + B(1) Gj = 0 (2.2 1) 

only if 

A(A)=L “1+“2+‘-+nj-l+ .,. . (2.22) 

In terms of recurrence relations the 1st bit only effect the jth bit after a delay of 
n,+n2+*o'+nj-1 cycles. Again this is obvious. In general when we consider 
collections of two or more bits we find that the simplest relationships between them 
involve delays of the order of the shortest path between any two of them. This has 
implications about how uniformly distributed k-tuples of random numbers are. If one 
has a set of bits which are algebraically independent, then they will takes on values 
during a full cycle which are uniformly distributed. It is desirable to have the most 
significant bits of the random number as uniform as possible. Successive values of the 
most significant bit are independent up to the full length of the effective shift register, 
n. So that to one bit accuracy the numbers are uniformly distributed on n-cubes. If 
n,2 is the shortest distance on the cycle from the most significant to the next most 
significant bit, then the first n ,2 pairs of bits will be independent and to two bit 
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accuracy the random numbers will be uniformly distributed on n,,-cubes. Clearly, we 
should make n,2 as large as possible which is [n/2]. Similarly we should spread the 
remaining bits around so as to maximize the distances between more significant bits. 
For example if there are 16 bits in the random number generator one could arrange 
them, with respect to the order implied by (2.15), as 

1,9,5, 10,3, 11,6, 12,2, 13, 7, 14,4, 15,8, 16. 

Let us keep the lengths of each shift register nj as uniform as possible. Such an 
arrangement approaches the ideal limit [6] for equidistribution where to t-bit 
accuracy one has numbers uniformly distributed on [n/t]-cubes. In the present 
scheme we approach this performance with the order of equidistribution to c bit 
accuracy given by 

[n/2t’““1]. (2.23) 

For practical purposes this is quite acceptable. 
We have discussed the properties of period and equidistribution for our algorithm 

and shown that they can be controlled. These are important, but one would like to 
understand further properties of the generator. A particularly important one which is 
often considered is the serial correlations of lagged pairs of numbers over a full 
period of length P = 2” - 1. 

where considering the random number as a fraction in [0, l] 

Yi=0.X,X2***Xm (Base 2) 

= 5 X,(i) 2-l. 
/=I 

An important property of PN sequences is that the bit correlations obey 

+gl...,- (+~x,)2=o(1/p), k # 0. 

(2.24) 

(2.25) 

(2.26) 

So in particular the correlation between Yi and Yr+k is 0(1/P) unless some of the bit 
sequences in the two numbers coincide exactly. Recall that in our algorithm each of 
the bits in the random word comes from the same sequence generated by an effective 
shift register with characteristic polynomial det(F), but with different seeds. Conse- 
quently, there can be no correlations in the same bit position until a full period, but 
there can be correlations between different bits of the words in some fraction of a 
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period. As discussed above two adjacent bits in the cycle obey an equation like (2.19) 
which means that there is some 1 such that G, = 1’G, (mod F) or 

A”l+’ = (1 + Jq2) (mod F). (2.27) 

The solution of this equation for 1 is very difficult. The only positive thing to offer on 
this point is that a general polynomial will be uniformly distributed on 0 < 1~ P - 1, 
and if F(‘(n) is sufficiently free of special characteristics then the polynomials (1 + Jq) 
can be considered general polynomials, or the bits of the generator should be 
uniformly distributed on the full period. There is one situation in which we can 
predict the delays of the bits in the generator, and that is when all of the (1 + nq) 
factors can be expressed in terms of one single factor (1 + Aqo). For example (1 + A), 
(1 +A’), (1 +A”) are all powers of (1 + 1). In this case the total delay around the 
generator is a known multiple of the basic delay introduced by (1 + Lqo), and must 
add up to one full period of the generator. Thus one may compute the delay between 
each pair of bits. 

III. RANDOM NUMBER GENERATORS 

Before constructing a PRNG based on the algorithm of Section II one must decide 
on the number of bits of resolution, and the period or equivalently the 
equidistribution properties required. These fix the constants m and n in Eq. (2.14), 
but not the q’s. They are determined by the requirement that f(A) = det F(J) be a 
primitive polynomial, and questions of layout. The first requirement is easier to 
satisfy than one might think. Whereas there are a fairly small number of trinomials to 
a given order, there are a huge number of polynomials which can be written in the 
form (2.14). A given polynomial can be easily tested for the property of being 
primitive. The method used here [7] requires an amount of time which is cubic in the 
order of the polynomial. First one constructs a matrix D, such that its characteristic 
is 

n-1 

Azi = r D,$ 

,To 
modf, O<i,j<n- 1. (3.1) 

Then one computes the rank of the matrix 

M,=d,+D, mod 2. (3.2) 

There is a theorem to the effect that the rank of M is n less the number of factors in 
the decomposition of f(n) into primitive factors 

J-(J) = fi [SiV)P. 
i=l 

(3.3) 
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TABLE 1 

Values of n for Which 2” - 1 is Prime 

I 31 1279 9941 
2 61 2203 11213 
3 89 2281 
5 107 3217 
7 127 4253 

13 521 4423 
19 607 9689 

In the case that the rank is n - 1, f is a power of a primitive polynomial. If the order 
of f is also prime, which it is for n a Mersenne number, then f (A.) is primitive. 
Because we wish to guarantee a maximal length period we will always choose n to be 
a Mersenne number. The known Mersenne numbers are listed in Table 1. 

It is instructive to work out in detail the properties of a small period generator so 
we can gain some confidence in what we are doing. In Table 2 we give a list of all 
sets of q’s less than (4, 5, 5, 5), respectively, for which 

(1 + nq’)(l + nqz)(l + /JQ)(l + A44) + Al9 (3.4) 

is primitive. The choice (2, 2, 3, 3) meets our requirements, and gives an effective 
FSR with characteristic polynomial 

1 + A4 + A6 + ALo + A19. (3.5) 

The full generator could be arranged as in Fig. 3. Notice that the delays between bits 
are, by the shortest path 

n -9, TI,~= 5, r1,~=4, nz3 = 5, nz4= 5, nj4=9, (3.6) I2 - 

so we expect the folowing equidistribution properties: for the most significant bit 19 
distribution, or the first two bits 9 distribution, for the first three bits 5 distribution, 
and for the full word 4 distribution. Under the circumstances this is the best we can 

TABLE 2 

Generators with m = 4, n = 19 

1125 2233 
1255 2235 
1334 2334 
1335 3335 
1345 3345 
1455 3355 
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FIG. 3. A 4 bit random number generator with m = 4, q = 2, 2, 3, 3, n = 19. 

hope to achieve. No other wiring arrangement could do better, but some could do 
worse. The period of the generator is 2” - 1 = 524287 which is easily accessible to 
simulation of a full period, and the above expectations are indeed fulfilled. Further, 
we can compute the delays of the four bits from each other in the sequence of the 
effective FSR. And discover that their relative positions are 

0, 262 144, 59298, 321442, (3.7) 

which are reasonably distributed in the full period. We have searched for other 
generators with wider words and longer periods. It is impractical to try to generate or 
list all polynomials of a given order so we have adopted the strategy of searching at 
random for sets of q’s which generate primitive effective FSRs. We select the q’s 
normally distributed with a small width around an average of which is about n/2m or 
half the length of a row. In Tables 2 through 8 we give generators for m = 4,8, 12, 
16, 24, and 32 each for one or two different n’s. 

We have studied several of the longer period generators with the standard heuristic 
tests and they perform within expectations. There is a problem of a subtle nature in 
that for long enough period these generators become essentially untestable. One must 
have a theoretical understanding of how they work or there is no chance of being sure 
that they reach the full period and distribution properties claimed. 

TABLE 3 

Randomly Selected Generators with m = 4, n = 3 1 

1122 2231 2355 
1155 2246 2457 
1337 2247 2556 
1357 2267 3344 
1467 2333 3366 
1557 2345 3444 
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TABLE 4 

Randomly Selected Generators with m = 8, n = 6 I 

11122455 13345668 24456789 
11124555 13445567 33344555 
11344556 1446688 10 34455569 
11345666 14566777 34667779 
12334567 23344458 45667888 
12334579 23345566 
13344447 24444456 

TABLE 5 

Randomly Selected Generators 
with m = 12, n = 61’ 

183242 1,2 324,5 

1,324, 1,&W 
b&3,4 1,2134,5 
1,&h% 1 2,3,4 6,7 

’ Subscripts represents repeat factors. 

TABLE 6 

Randomly Selected Generators with m = 12, n = 127 . 

2 5 6,7,8,10, 4 5 6 72839, 13 5 6,7,8,9 11 
4,5,6,7,8 9 5,6,7,9 10, 6,8,9,10 11 
4,5,6,7,8 9,ll 5,6,7 8,9 10 11 6 7,8,9* 12, 
456,78,91011, 5,6 7,8,9,12, 7,8,10,12 

TABLE 7 

Randomly Selected Generators m = 16, n = 127 

12,3456,769 2,34,5 6,7 8,9 415,6,7 8 11 
1 2334,5,6,7, 23,45,6,7,10, 4,5,6,89 
13 4,5,6,7,8,9 10 2 3 4,5 6,7,8,9, 
14,6,7,9,10 23425262738211 

14,5,6,7 8,9, 3,&b&7,8 
14 5,6,7 8,9 3,4 516, 10 
2,3,%6,7 3 4,5,6,7,8 9,lO 
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TABLE 8 

Randomly Selected Generators for n = 52 1 

19 21,22 23,24,25 26,21 m= 16 
21 22,23,24,25,26, m= 16 
22,23,24,25,26, m= 16 
11 12,13,14,16,17,18,20,21 m = 24 
12,13,14,15,16,17,1820 m = 24 
8 9,10,11,12,13,14 15,16 m=32 
9 10,11,12,13,14,15,16, m = 32 

ACKNOWLEDGMENTS 

The author would like to thank J. Richardson and C. L. Seitz for very useful discussions and Cal 
Tech computer science for their hospitality and support while part of this research was carried out. 

REFERENCES 

I. K. BINDER, “Monte-Carlo Methods” (K. Binder, Ed.), Springer-Verlag, Berlin, 1979. 
2. R. PEARSON, J. RICHARDSON, R. SUAYA, AND D. TOUSSAINT, in preparation. 
3. R. C. TAUSWROTH, Math Comput. 19 (1965), 201. 
4. T. G. LEWIS AND W. H. PAYNE, J. Assoc. Comput. Mach. 20 (1973), 456. 
5. S. W. GOLOMB, “Shift Register Sequenes,” Holden-Day, San Francisco, 1967. 
6. J. P. R. TOOTHILL, W. D. ROBINSON, AND D. J. EAGLE, J. Assoc. Comput. Mach. 20 (1973), 469. 
7. E. R. BERLEKAMP, “Algebraic Coding Theory,” McGraw-Hill, New York, 1968. 


